
Proceedings of the 2018 Winter Simulation Conference
M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds.

ADDING AGENT CONCEPTS TO OBJECT EVENT MODELING AND SIMULATION

Gerd Wagner
Luis G. Nardin

Department of Informatics
Brandenburg University of Technology

Konrad-Wachsmann-Allee 5
Cottbus 03046, GERMANY

ABSTRACT

Object Event Modeling and Simulation (OEM&S) is a general Discrete Event Simulation paradigm combining
object-oriented modeling with the event scheduling paradigm. We show how to extend OEM&S by adding
concepts of agent-based modeling and simulation, resulting in a framework that we call Agent/Object Event
Modeling and Simulation (A/OEM&S). The main point for such an extension is to define agents as special
objects, which are subject to general (physical) laws of causality captured in the form of event rules, and
which have their own behavior allowing them to interact with their inanimate environment and with each
other. Because agent behavior is decoupled from physical causality, an A/OE simulator consists of an
environment simulator, which simulates the physical world (the objective states of material objects), and
agent simulators, which simulate the internal (subjective) states of agents and their behaviors.

1 INTRODUCTION

In the area of modeling and simulation, the term ‘agent-based’ simulation is used ambiguously both for
individual-based and cognitive agent simulation. The former, which is sometimes also called ‘microscopic’
simulation, takes the structure and interactions of individual entities into consideration for modeling complex
systems, whereas the latter also models the cognitive state and cognitive operations of an agent. Thus,
it seems natural to distinguish between a weak concept of agents, commonly used in individual-based
simulation where agents are entities that interact with their environment and with each other, and a stronger
concept that is based on modeling the cognitive (or mental) state of agents. In any case, since the interactions
of agents are based on discrete perception and action events, it is natural to define an agent-based modeling
and simulation approach as an extension of a Discrete Event Simulation (DES) approach.

Object-Event Modeling and Simulation (OEM&S), proposed in (Wagner 2017a; Wagner 2018), is
a general DES paradigm combining object-oriented state structure modeling with the event scheduling
paradigm defined by SIMSCRIPT (Markowitz et al. 1962) and Event Graphs (Schruben 1983). In this
paper, we show how to extend OEM&S by adding concepts of agent-based M&S, resulting in a paradigm that
we call Agent/Object-Event Modeling and Simulation (A/OEM&S). The main point for such an extension
is to define agents as special objects, which are not only subject to general (physical) laws of causality
captured in the form of event rules, but which also have their own behavior allowing them to interact
with their inanimate environment and with each other. Because agent behavior is decoupled from physical
causality, an A/OE simulator consists of an environment simulator, which is in charge of simulating the
physical world (the objective states of material objects), and agent simulators, which simulate the internal
(subjective) states of agents and their behavior.

Consequently, it seems natural to distinguish between a weak concept of agents, as it is common in
individual-based simulation, where agents are entities that interact with their environment and with each
other, and stronger concepts that are based on modeling the cognitive (or mental) state of agents. In any

893978-1-5386-6572-5/18/$31.00 ©2018 IEEE

Wagner and Nardin

case, since the interactions of agents are based on discrete perception and action events, it is natural to
define an agent-based M&S approach as an extension of a Discrete Event Simulation (DES) approach.

This paper presents the issues and the modeling concepts needed for A/OEM&S. In a follow-up paper,
we will present a JavaScript-based implementation of an A/OEM&S framework called A-OESjs.

For a general model of the interactive behavior of agents, we need to model the beliefs of an agent
about its environment and about itself, which result both from perception and from communication.
Beliefs represent the typically partial and sometimes incorrect (subjective) information of agents about their
environment. They are the most basic component of the cognitive state of an agent. The simplest model
of a cognitive state only consists of beliefs, while more advanced models may also include commitments,
goals, intentions, emotions, etc. The beliefs of an agent can be viewed as its information items, such that
the term information state is synonymous to belief state.

In many agent-based M&S projects, it is not relevant to model the incompleteness of beliefs or the
possibility of incorrect beliefs, and, consequently, there is no need for representing an explicit belief state
as a kind of duplication of the objective information state managed by the simulator. In these cases, we
can make the assumption that agents have perfect information and short-circuit their information state with
the objective information state managed by the simulator.

A concept of belief is needed for modeling both basic forms of interactive behavior: for modeling the
interaction with the inanimate environment via a perception-action cycle and for modeling communication
between agents. Perception events typically lead to the formation of new beliefs, which are the basis
for (re)actions. New beliefs may also result from communication events, especially in communication
processes based on tell-ask-reply messages. A concept of belief is needed for modeling both basic forms
of interactive behavior: the interaction with the inanimate environment via a perception-action cycle and
the communication between agents. Perception events typically lead to the update or formation of new
beliefs, which are the basis for (re)actions. Updated and new beliefs may also result from communication
events, especially in communication processes based on tell-ask-reply messages.

The beliefs of an agent about objects in the environment (including other agents) cannot be represented
in the form of property-value slots, like nameOf007 = “JB”, but need to be represented in the form of
object-property-value triples, like 〈007, name, “JB”〉. Therefore, the types of beliefs of an agent cannot be
defined by ordinary properties in the definition of an agent type A, but rather by belief object types Ob, such
that an agent of type A may have beliefs about belief objects of type Ob in the form of object-property-value
triples.

In general, communication between agents includes many forms of conversational message exchanges.
The most fundamental message types for agent communication are TELL, ASK and REPLY, which are
also included in the agent communication language standards FIPA (Foundation for Intelligent Physical
Agents) (Fipa 1996) and KQML (Kqml 1993). Making a distinction between facts and beliefs in a simulation
framework allows distinguishing between sincere answers and lies in communication.

In general, the behavioural repertoire of an agent may include both reactive and proactive forms of
behavior. The reactive behavior of an agent consists of actions performed in response to events. Proactive
behavior is based on declarative tasks or goals that define a certain state of affairs, for which to achieve an
agent has to generate and execute an action plan. Whenever an agent commits to execute an action plan,
such a plan may be viewed to be a component of the agent’s cognitive state in the sense of an intention.

There is a popular term, “belief/desire/intention (BDI) architecture”, standing for a class of mental
agent architectures that have only been sketched, but not well-defined, in (Bratman et al. 1988). In most
BDI architectures, the term “desire” is interpreted in the sense of goals. Thus, the term essentially stands
for any architecture supporting proactive behavior.

Since reactive behavior is more fundamental than proactive behavior, the latter should be added to a
well-defined architecture of the former. In this paper, we are only concerned with reactive behavior. But
we plan to add proactive behavior later, when the foundations of A/OEM&S have been established.

894

Wagner and Nardin

As an illustrating example, we use a scenario where a prince, after arriving on an island represented
as a 2-dimensional grid, has to collect treasures and find the castle with the princess. On his way, the
prince may meet knights who have information about the position of nearby treasures and the direction
to the castle with the princess. All objects, including the castles, the princess, the treasures, the prince
and the knights, have a position in the form of an (x,y) grid coordinate. These object positions are facts
maintained by the environment simulator. As agents, the prince and the knights have self-beliefs about
their own position and certain beliefs about the position of treasures and the castle with the princess.

2 RELATED WORK

Scientific communities adopt agent concepts differently. The most prominent communities exploiting these
concepts are the Agent-Based Modeling (ABM) and the Multiagent System (MAS) communities. The
former uses the concept of agents as an abstraction to model a collection of autonomous decision-making
entities to searching for explanatory insights into collective behavior (Bonabeau 2002); while the latter uses
the agent abstraction to design systems composed of a loosely coupled network of agents that work together
to solve specific practical and engineering problems that are beyond the individual capabilities or knowledge
of each agent (Stone and Veloso 2000). Although both use the concept of agents, their goal differences
prevent them from agreeing on a standard definition. Still, they agree on some agents capabilities: (1)
to perceive the environment (perceive), (2) to store and update their subjective view of the environment
(belief), (3) to change the environment (act), and (4) to interact among themselves (communicate).

Current simulation tools used by these communities offer different levels of support for modeling these
features (see Table 1). Usually platforms used by the ABM community are based on the object-oriented
approach and they neither support modeling beliefs or message types, nor clearly distinguish between facts
and beliefs.

Table 1: Summary of agent supported features of ABM and MAS platforms.

Platform Perceive-Act Fact/Belief Belief Type Message Type

NetLogo Yes No property-value —
Repast Symphony Yes No — —
MASON Yes No — —
Gamma Yes No — FIPA
AnyLogic Yes No — —
Jadex BDI Yes No property-object FIPA
Jason Yes Yes first-order predicate partially FIPA/KQML
2APL Yes Yes first-order predicate FIPA

NetLogo (Wilensky 1999) allows the representation of situated agents as turtles in an environment
represented as a 2-dimensional space divided up into a grid of patches. Turtles support simple property-value
variables (or beliefs), some predefined by the system, but they do not distinguish between facts and beliefs.
Turtles can act using the command ask to sense the environment or to interact with other turtles. Turtles
interact via method invocation rather than via the exchange of typed messages.

Repast Symphony (North et al. 2013) and MASON (Luke et al. 2005) are both multiagent simulation
toolboxes that provide a set of tools for developing agent-based models in Java. Agents in these toolboxes
are defined by extending an abstract Agent class that include default actions and perceptions of the agent.
These toolboxes, however, do not support any built-in belief model or message types, leaving their definition
to the modeler. Likewise, the GAMA (Drogoul et al. 2013) platform does not define any programming
construct to model beliefs; however, GAMA provides a high-level modeling language (GAML) that supports
message types, multi-level modeling of agents and very complex environment representations.

895

Wagner and Nardin

AnyLogic is a multimethod simulation modeling tool that supports agent-based, discrete event and
system dynamics simulation methodologies. Agents are represented as active objects and modeled as state
machines that support sensing and acting on the environment as well as the interaction with other agents.
AnyLogic, however, does not neither distinguish between facts and beliefs nor supports belief modeling.

The situation is different to the MAS community in which frameworks, such as Jadex BDI (Pokahr
et al. 2005), Jason (Bordini et al. 2007) and 2APL (Dastani 2008), provide programming constructs to
specify systems in terms of a set of individual agents and a set of environments in which agents can perform
actions. At the individual agent level, these frameworks provide programming constructs to implement
cognitive agents based on the BDI architecture, such as beliefs, goals, plans, actions (i.e., belief updates,
external actions, or communication actions), and a set of rules through which the agent can decide which
actions to perform. They also define or use specific message types through which agents can communicate.

A/OEM&S may bridge the gap between both communities and integrates features important to both
in a single formally well-defined simulation platform.

3 INTRODUCTION TO OEM&S

For modeling a discrete dynamic system according to the OEM&S paradigm, we have to

1. Describe its object types and event types;
2. Specify, for any event type, an event rule that captures a causal regularity responsible for state

changes of objects and follow-up events, and that is triggered by events of that type.

In OEM&S, the object types and event types that are relevant for describing the state structure and
dynamics of the system under investigation are defined in an information model, which forms the basis
for making a process model. Any simulation modeling approach following the OEM&S paradigm (called
an OEM approach) needs to choose, or define, an information modeling language and a process modeling
language. Possible choices are Entity Relationship Diagrams or UML Class Diagrams for information
modeling, and UML Activity Diagrams or BPMN Process Diagrams for process modeling. In the OEM
approach of Wagner (2018), the choice consists of UML Class Diagrams for conceptual information
modeling and information design modeling, as well as BPMN Process Diagrams for conceptual process
modeling and DPMN Process Diagrams for process design modeling (DPMN stands for Discrete Event
Process Modeling Notation, which is a BPMN-based process modeling language).

Object types and event types are modeled as special categories of classes in a UML Class Diagram, which
can be implemented with any object-oriented (OO) programming language or simulation library/framework.
Random variables are modeled as a special category of UML operations constrained to comply with a
specific probability distribution such that they can be implemented as methods of an object or event class
with any OO simulation technology. Event rules, which include event routines, are modeled visually in
BPMN and DPMN process diagrams and textually in pseudo-code, such that they can be implemented in
the form of special onEvent methods of event classes.

An OEM approach results in a simulation design model specifying object types and event types and
causal regularities for each type of event in the form of event rules. Such a specification has a well-defined
operational semantics, as shown in (Wagner 2017a). It can, in principle, be implemented with any OO
simulation technology. However, a straightforward implementation can only be expected from a technology
that implements the OEM&S paradigm, such as the OES JavaScript (OESjs) framework presented in
(Wagner 2017b).

4 BELIEFS

In the simulation of cognitive agents that are situated in an environment consisting of objects and agents,
there are two kinds of information items: facts and beliefs. Facts represent the true (objective) state of the

896

Wagner and Nardin

environment, while beliefs represent the typically partial and sometimes incorrect (subjective) information
of agents about their environment.

In general, not all beliefs are categorical (having a classical truth value). Certain types of beliefs
may be qualified in some way, e.g., in terms of (disjunctive or gradual) uncertainty, lineage or multi-level
security. Gradual uncertainty can be expressed with the help of an uncertainty scale such as fuzzy certainty
values or probabilities. However, for simplicity, and lack of space, we will not consider any type of belief
qualification in this paper.

Beliefs about objects in the environment (including other agents) cannot be represented by simple
property-value slots, but need to be represented by object-property-value triples. Therefore, the definition
of an agent type A may include the definition of one or more belief object types Ob, such that an agent
of type A may have beliefs about belief objects of type Ob in the form of object-property-value triples.
These belief triples may be stored in relational-database-like tables or Resource Description Framework
(RDF) (W3c 2014) style triple stores as part of the agent’s mental state.

The concept of belief object types allows to represent all kinds of beliefs of an agent about its environment,
no matter which vocabulary (or ontology) the agent is using. In this way, agents could either use a shared
vocabulary, or they could use their own private vocabularies, which would have to be mapped to each
other for successful communication. However, in this paper, we do not consider the problems of private
vocabularies and ontology/vocabulary mapping. Proposals for solving these communication problems with
the help of semantic negotiation, shared and common ontologies or cooperation between agents can be
found in (Diggelen et al. 2006; Williams 2004; Garruzzo and Rosaci 2007).

For simplicity, we assume that all agents are using a shared vocabulary, which is the same as the
vocabulary used by the environment simulator. This shared vocabulary assumption implies that all agents,
and the environment simulator, use the same unique names for

1. Object types,
2. Properties of objects,
3. Objects.

Notice that, technically, the unique names for objects are object IDs.
The shared vocabulary assumption does not imply that a belief object type defined for several agents has

the same schema (set of properties) as the corresponding object type defined for the environment simulator.
As shown in the example below, since beliefs are often incomplete, belief object types may be defined with
a subset of the properties defined for the corresponding object type. An additional assumption, called the
shared schema assumption, is needed for making the schemas of belief object types equal to the schemas
of corresponding object types.

For defining an agent type, such as Prince, we have to specify its objective properties, like x, y and
wealth providing its objective position and wealth, its self-belief properties (e.g., wealth for representing
its believed wealth) and its belief object types, e.g., Treasure and Princess.

Following the syntax of OESjs, we could have the following code for an A/OES agent type definition
in A-OESjs:
var Prince = new aGENTtYPE({

name: "Prince",
supertype: "GridSpaceObject",
properties: {"wealth": {range: "NonNegativeInteger"}},
selfBeliefProperties: ["wealth"],
beliefObjectTypes: [{"Treasure": ["x","y"]}, {"Princess": ["x","y"]}],
...

});

897

Wagner and Nardin

Notice that the agent type Prince is defined as a subtype of GridSpaceObject such that it inherits the
gridspace position properties x and y. Since there are no corresponding definitions of self-belief properties,
this means that a prince agent does not have a belief about (i.e., does not know) its position, but only have
beliefs about its wealth and about the positions of the treasure and the princess objects.

The distinction between facts and beliefs requires that a simulator maintains both the objective and the
subjective state of an agent in parallel. This can be achieved by forming two classes from an agent type
definition: an agent object (AO) class and an agent subject (AS) class. E.g., the agent type Prince could
be implemented by forming the PrinceAO and PrinceAS classes shown in Figure 1.

Figure 1: Two sides of the same coin: an agent object type and a corresponding agent subject type.

While the instances of an agent object class are objects whose states are managed by the environment
simulator, the instances of an agent subject class represent agents that are managed by an agent simulator,
which may run in a separate thread.

Using the shared schema assumption, the Prince agent type definition can be simplified to
var Prince = new aGENTtYPE({

name: "Prince",
supertype: "GridSpaceObject",
properties: {"wealth": {range: "NonNegativeInteger"}},
beliefObjectTypes: ["Treasure", "Princess"],
...

});

Based on the shared schema assumption, (1) prince agents now have three self-belief properties (“x”,“y”
and “wealth”), defined implicitly, one for each objective property, and (2) the belief object types “Treasure”
and “Princess” have the same properties as the corresponding object types.

4.1 Facts and Beliefs as Triples

More precisely speaking, we do not deal with ‘facts’ and ‘beliefs’, but with atomic fact statements and
atomic belief statements, each of them having the form of an object-property-value triple. For instance,
the atomic fact statement that the wealth of the prince agent with ID 17 is 500, is expressed by the triple

[It’s a fact that] 17 wealth 500

while the corresponding atomic belief statement of agent 17 that its wealth is 650 is expressed by the triple

[Agent 17 beliefs that] 17 wealth 650

and the atomic belief statement of agent 17 that the position of object 23 (the princess) is given by x = 35
and y = 42 is expressed by the triples

[Agent 17 beliefs that] 23 x 35, 23 y 42

In standard predicate logic syntax, such a triple corresponds to an atomic sentence where the property
of the triple statement would be used as a predicate, and the object identifier and the property’s value would
be the arguments of this predicate, resulting in an expression like:

898

Wagner and Nardin

[Agent 17 beliefs that] wealth(17, 650)

The formal logic language RDF defined by the W3C supports the use of triples along with multiple
vocabularies. The RDF query language SPARQL (W3c 2013) allows expressing queries about information
triples. It seems to be a natural choice for expressing queries about the beliefs of other agents in ASK
messages.

4.2 Perfect Information Agents

A perfect information (PI) agent has complete and correct information about itself and about all objects
that it knows.

The Prince agent type can be defined as a PI agent type in the following way:
var Prince = new aGENTtYPE({
name: "Prince",
supertype: "GridSpaceObject",
properties: {"wealth": {range: "NonNegativeInteger"}},
hasPerfectInformation: true,
...

});

This definition implies that all objective properties are duplicated as self-belief properties and all
self-belief slots have the same values as the corresponding fact slots, which requires to synchronize the
information state of a PI agent with its objective state maintained by the environment simulator.

4.3 Discrepancies between Facts and Corresponding Beliefs

In general, we can have various types of discrepancies between facts and corresponding beliefs. The
first issue is the possibility to use different vocabularies to express belief statements about the same fact.
Assuming shared vocabularies, we still have the possibility of discrepancies between facts and corresponding
beliefs with respect to (1) the completeness of beliefs and (2) the actual and the believed value of a property.

There are several types of possible discrepancies arising from different vocabularies being used. Agents
may use different names for object types and/or properties, and they may use different identifiers for objects.
There are also the issues of schema incompleteness and non-correspondence. Schema incompleteness
concerns the possibility that not all object types and properties (as defined objectively for the environment
of a simulation model) have a corresponding name in the vocabulary of an agent. Non-correspondence refers
to the possibility that some of the object type and/or property names used by an agent do not correspond
to a real object type or property.

However, in many cases, models abstract away from these possible discrepancies, using the perfect
information assumption, the shared schema assumption or at least the shared vocabulary assumption.

5 THE PERCEPTION-ACTION CYCLE

An agent may perceive objects or events in its environment. One may distinguish between a passive and
an active form of perception. Passive perception takes place asynchronously while an agent is busy or idle,
while active perception requires the agent to perform a perceptive action or activity (like issuing a query
about its neighborhood).

The A/OEM&S paradigm is based on a simple model of perception where passive perceptions take
the form of (instantaneous) perception events and active perception consists of querying the environment
simulator. In general, agents are exposed to perception events and react in response to them.

Conceptually, an incoming message event, caused by another agent sending the message, can be viewed
as a special type of perception event. Likewise, a communication action, which is an outgoing message
event, can be viewed as a special type of action event. However, for simplicity, in the A/OEM&S language,

899

Wagner and Nardin

we will neither subsume incoming message events and non-communicative perception events under a general
concept of perception events, nor outgoing message events and non-communicative action events under a
general concept of action events. In A/OEM&S, the term “perception event” refers to non-communicative
perception events, and the term “action event” refers to non-communicative action events (see Figure 2).

Figure 2: Elements of perception and action.

In the case of physical agents, like robots, (passive) perception events are created by a sensor containing
an event detector, such as a Proximity Infra-Red (PIR) sensor, which has its output pin going high whenever
it detects an infra-red emitting object (e.g., a human or a medium to large sized animal) in its reach. Active
perceptions are created by querying the measurement value of a sensor containing a quality detector, such
as a DHT22 temperature and humidity sensor. The distinction between event detectors and quality detectors
has been proposed in (Diaconescu and Wagner 2015).

Perception events are internal events created by the environment simulator and transmitted to an agent
simulator that processes them by invoking the agent’s perception event rule method for the type of the
perception event, which represents the agent’s reaction rule for this type of event.

Action events are external events created by an agent simulator and transmitted to the environment
simulator, which processes them by invoking the action event type’s onEvent method representing the
environment simulator’s event rule.

In our example scenario, the prince agent may perceive a treasure object when moving forward. In
the simplest model, perception would be limited to the grid cell to which the prince has moved. When
the prince agent has discovered a treasure object, it reacts by picking it up. We could have the following
A-OESjs code for defining the action event type PickUpTreasureObject with the property treasureObject
and an event rule:
var PickUpTreasureObject = new aCTIONeVENTtYPE({

name: "PickUpTreasureObject",
properties: {"treasureObject": "TreasureObject"},
onEvent: function (e) {

e.performer.wealth += e.treasureObject.value;
sim.objects.remove(e.treasureObject.id); // destroy treasure object

}
});

900

Wagner and Nardin

The event rule of an action event type is applied by the environment simulator when it receives an
action event of that type from an agent simulator. In this case the environment simulator would execute the
onEvent method such that the prince agent’s wealth attribute is incremented by the value of the treasure
object, which is then destroyed (removed from the simulation).

In general, perception event types may be shared among several agent types, but in the following
example TreasureObjectRecognition is defined as an internal perception event type within the agent type
definition.
var Prince = new aGENTtYPE({

name: "Prince",
supertype: "GridSpaceObject",
properties: {"wealth": {range: "NonNegativeInteger"}},
beliefObjectTypes: ["Treasure", "Princess"],
...
perceptionEventTypes: {

"TreasureObjectRecognition": {
properties: {"value": {range: Integer}}

}
},
perceptionEventRules: [

{"TreasureObjectRecognition": function (e) {
var actionEvents = [];
e.perceiver.wealth += e.value;
actionEvents.push(new PickUpTreasureObject());
return actionEvents;

}}
],
});

The prince agent perceives the value of a discovered treasure object and increments its wealth self-belief
property accordingly. The simulation model may create a discrepancy between the perceived and the actual
value of a treasure object by defining an event rule that creates TreasureObjectRecognition events with a
value that deviates from the actual value.

6 COMMUNICATION

In general, communication between agents includes many forms of conversational message exchanges. The
most fundamental type of a conversational message exchange is tell-ask-reply communication.

There are two kinds of message types:

• Ad-hoc message types: the structure and semantics of these messages types are defined for specific
simulation models in the form of rules governing the processing of messages of such a type.

• Generic message types: Tell/Untell and Ask/Reply are examples of generic message types, which
should be provided as built-ins in a cognitive agent simulation framework. As they refer to general
speech acts, the semantics of these message types, which implies a corresponding communication
protocol, should be based on speech act theory.
It is an option to define an ad-hoc message type as an extension of a generic message type.

There are two prominent agent communication language standards: FIPA and KQML, both defining
standard message types with a semantics based on the philosophical speech act theory of Austin and Searle.

Figure 3 shows the elements of A/OEM&S message-based communication. For simplicity, we assume
that all agents are using a shared vocabulary and a shared schema, as discussed in Section 4.

901

Wagner and Nardin

Figure 3: Elements of message-based communication.

Out-message events are external events transmitted by the sender’s agent simulator to the environment
simulator, which transforms them to corresponding in-message events that are transmitted to the receivers’
agent simulators.In-message events are internal events transmitted by the environment simulator to the
receiver’s agent simulator that processes them by invoking the agent’s in-message event rule method for
this message type.A communication event (see Figure 4) is a composite event consisting of an out-message
event and one or more corresponding in-message events.

Figure 4: Communication as a composite event.

In our example scenario, the prince agent has to ask knights about the location of treasures, and knights
have to reply with zero or more answers. Using the ad-hoc message types AskAboutTreasureLocations and
ReplyTreasureLocations, we could have the following A-OESjs code:
var AskAboutTreasureLocations = new mESSAGEtYPE({

name: "AskAboutTreasureLocations",
properties: {"myTreasureLocations": {range: Array}}

});
var Prince = new aGENTtYPE({

name: "Prince",
supertype: "GridSpaceObject",
properties: {"wealth": {range: "NonNegativeInteger"}},
beliefObjectTypes: ["Treasure", "Princess"],
outMessageTypes: ["AskAboutTreasureLocations"],
...

});

The agent type Knight would have to process an incoming message of type AskAboutTreasureLocations
and respond with an outgoing message of type ReplyTreasureLocations according to the agent’s in-message
event rule for AskAboutTreasureLocations in-message events:

902

Wagner and Nardin

var ReplyTreasureLocations = new mESSAGEtYPE({
name: "ReplyTreasureLocations",
properties: {"treasureLocations": {range: Array}}

});
var Knight = new aGENTtYPE({
name: "Knight",
supertype: "GridSpaceObject",
beliefObjectTypes: ["Treasure", "Princess"],
inMessageEventRules: [

{"AskAboutTreasureLocations": function (e) {
var actionEvents = [], treasureLocations = ...;
actionEvents.push(new OutMessageEvent({

message: new ReplyTreasureLocations(treasureLocations),
receivers: [e.sender]

}));
return actionEvents;

}}
],
outMessageTypes: ["ReplyTreasureLocations"]

});

The responding knight agent retrieves the nearby treasure locations from its belief base after it has
dropped its out-dated beliefs about the treasure locations that the prince agent has already found and
communicated to the knight via the myTreasureLocations message property.The agent’s simulator transmits
the ReplyTreasureLocations out-message event to the environment simulator, which creates a corresponding
in-message event and transmits it to the asking knight agent’s simulator.

7 CONCLUSIONS

We have shown how to define an agent-based simulation paradigm on top of the general DES paradigm
OEM&S by accommodating the three most fundamental agent features: beliefs, interaction with the
inanimate environment via perception and (re-)action, and inter-agent communication.In future work we
plan to fully implement the A/OEM&S paradigm on the basis of the OESjs simulation framework. We
also plan to extend the formal semantics of OEM&S such that it accounts for A/OEM&S.

REFERENCES

Bonabeau, E. 2002. “Agent-Based Modeling: Methods and Techniques For Simulating Human Systems”.
Proceedings Of The National Academy Of Sciences Of The United States Of America 99(3):7280–7287.

Bordini, R. H., J. F. HÜbner, and M. J. Wooldridge. 2007. Programming Multi-Agent Systems In Agentspeak
Using Jason. 1st ed. Wiley Series In Agent Technology. Chichester: Wiley & Sons.

Bratman, M. E., D. J. israel, and M. E.Pollack. 1988. “Plans and Resource-Bounded Practical Reasoning”.
Computational Intelligence 4(4):349–355.

Dastani, M. 2008. “2apl: A Practical Agent Programming Language”. Autonomous Agents and Multi-Agent
Systems 16(3):214–248.

Diaconescu, I.-M., and G. Wagner. 2015. “Modeling and Simulation Of Web-Of-Things Systems As Multi-
Agent Systems”. In Proceedings Of The 2015 German Conference On Multiagent System Technologies
(Mates), Volume 9433 of Lecture Notes In Artificial Intelligence, 137–153, edited by P. Muller et al.:
Springer Verlag.

903

Wagner and Nardin

Diggelen, J. V., R. J. Beun, F. Dignum, R. M. V. Eijk, and J. J. C. Meyer. 2006. “Anemone: An Effective
Minimal Ontology Negotiation Environment”. In Proceedings Of The International Joint Conference
On Autonomous Agents and Multi-Agent Systems (Aamas), 899–906. Hakodate, Japan: Acm.

Drogoul, A., E. Amouroux, P. Caillou, B. Gaudou, A. Grignard, N. Marilleau, P. Taillandier, M. Vavasseur,
D. A. Vo, and J. D. Zucker. 2013. “Gama: Multi-Level and Complex Environment For Agent-Based
Models and Simulations”. In Proceedings Of The International Joint Conference On Autonomous Agents
and Multiagent Systems, 1361–1362. Ifaamas.

Fipa 1996. “Foundation For Intelligent Physical Agents”. Accessed July 20th, 2018.
Garruzzo, S., and D. Rosaci. 2007. “Ontology Enrichment In Multi-Agent Systems Through Semantic

Negotiation”. In Proceedings Of The International Conference On Cooperative Information Systems
(Coopis), Volume 4803 of Lecture Notes In Computer Science, 391–398. Vilamoura, Portugal: Springer.

Kqml 1993. “Knowledge Query and Manipulation Language (Kqml)”. Accessed July 20th, 2018.
Luke, S., C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan. 2005. “Mason: A Multi-Agent Simula-

tion Environment”. Simulation: Transactions Of The Society For Modeling and Simulation Interna-
tional 82(7):517–527.

Markowitz, H., B. Hausner, and H. Karr. 1962. “Simscript: A Simulation Programming Language”.
Memorandum Rm-3310-Pr, The Rand Corporation, Santa Monica, California.

North, M. J., N. T. Collier, J. Ozik, E. R. Tatara, C. M. Macal, M. Bragen, and P. Sydelko. 2013. “Complex
Adaptive Systems Modeling With Repast Simphony”. Complex Adaptive Systems Modeling 1(3):1–26.

Pokahr, A., L. Braubach, and W. Lamersdorf. 2005. “Jadex: A Bdi Reasoning Engine”. In Multi-Agent
Programming, 149–174, edited by R. Bordini et al. New York, Ny: Springer Science+Business Media
Inc., Usa.

Schruben, L. 1983. “Simulation Modeling With Event Graphs”. Communications Of The Acm 26:957–963.
Stone, P., and M. Veloso. 2000. “Multiagent Systems: A Survey From A Machine Learning Perspective”.

Autonomous Robots 8(3):345–383.
W3c 2013. “Sparql 1.1 Query Language”. Accessed July 20th, 2018.
W3c 2014. “Rdf Schema 1.1”. Accessed July 20th, 2018.
Wagner, G. 2017a. “An Abstract State Machine Semantics For Discrete Event Simulation”. In Proceedings

Of The 2017 Winter Simulation Conference, 762–773, edited by W. K. V. Chan et al. Piscataway, New
Jersey: IEEE.

Wagner, G. 2017b. “Sim4edu.Com – Web-Based Simulation For Education”. In Proceedings Of The 2017
Winter Simulation Conference, 4240–4251, edited by W. K. V. Chan et al. Piscataway, New Jersey:
IEEE.

Wagner, G. 2018. “Information and Process Modeling For Simulation Part I: Objects and Events”. Journal
Of Simulation Engineering 1:1:1–1:25.

Wilensky, Uri 1999. “Netlogo”. Accessed July 20th, 2018.
Williams, A. B. 2004. “Learning To Share Meaning In A Multi-Agent System”. Autonomous Agents and

Multi-Agent Systems 8(2):165–193.

AUTHOR BIOGRAPHIES

GERD WAGNER is Professor of Internet Technology at Brandenburg University of Technology, Germany.
His research interests include (agent-based) modeling and simulation, foundational ontologies, knowledge
representation and web engineering. His e-mail address is wagnerg@b-tu.de.

LUIS G. NARDIN is Assistant Professor at Brandenburg University of Technology, Germany. His research
interests are agent-based modeling and simulation, multiagent systems, and simulation data analysis. His
email address is nardin@b-tu.de.

904

